Partial Coherence Estimation via Spectral Matrix Shrinkage under Quadratic Loss

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shrinkage Preliminary Test Estimation under a Precautionary Loss Function with Applications on Records and Censored Ddata

Shrinkage preliminary test estimation in exponential distribution under a precautionary loss function is considered. The minimum risk-unbiased estimator is derived and some shrinkage preliminary test estimators are proposed. We apply our results on censored data and records. The relative efficiencies of proposed estimators with respect to the minimum ‎risk-unbiased‎&...

متن کامل

Estimation with Quadratic Loss

It has long been customary to measure the adequacy of an estimator by the smallness of its mean squared error. The least squares estimators were studied by Gauss and by other authors later in the nineteenth century. A proof that the best unbiased estimator of a linear function of the means of a set of observed random variables is the least squares estimator was given by Markov [12], a modified ...

متن کامل

Appoximation-assisted estimation of eigenvectors under quadratic loss

Improved estimation of eigen vector of covariance matrix is considered under uncertain prior information (UPI) regarding the parameter vector. Like statistical models underlying the statistical inferences to be made, the prior information will be susceptible to uncertainty and the practitioners may be reluctant to impose the additional information regarding parameters in the estimation process....

متن کامل

Function Estimation via Wavelet Shrinkage

In this article we study function estimation via wavelet shrinkage for data with long-range dependence. We propose a fractional Gaussian noise model to approximate nonparametric regression with long-range dependence and establish asymp-totics for minimax risks. Because of long-range dependence, the minimax risk and the minimax linear risk converge to zero at rates that diier from those for data...

متن کامل

Minimax Estimation via Wavelet Shrinkage

We attempt to recover an unknown function from noisy, sampled data. Using orthonormal bases of compactly supported wavelets we develop a nonlinear method which works in the wavelet domain by simple nonlinear shrinkage of the empirical wavelet coe cients. The shrinkage can be tuned to be nearly minimax over any member of a wide range of Triebeland Besov-type smoothness constraints, and asymptoti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Signal Processing

سال: 2016

ISSN: 1053-587X,1941-0476

DOI: 10.1109/tsp.2016.2582464